Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Stud Health Technol Inform ; 270: 1305-1306, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32570631

RESUMO

This study describes an approach to support decisions on the acquisition of innovative nursing technologies. The approach focusses a participatory design that involves nursing staff from the beginning of the process and aims at achieving positive results regarding identification with the decision of implementation and use of technologies by nursing staff.


Assuntos
Enfermeiras e Enfermeiros , Humanos
2.
Front Physiol ; 8: 894, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209225

RESUMO

The nitroxyl (HNO) prodrug, CXL-1020, induces vasorelaxation and improves cardiac function in canine models and patients with systolic heart failure (HF). HNO's unique mechanism of action may be applicable to a broader subset of cardiac patients. This study investigated the load-independent safety and efficacy of CXL-1020 in two rodent (rat) models of diastolic heart failure and explored potential drug interactions with common HF background therapies. In vivo left-ventricular hemodynamics/pressure-volume relationships assessed before/during a 30 min IV infusion of CXL-1020 demonstrated acute load-independent positive inotropic, lusitropic, and vasodilatory effects in normal rats. In rats with only diastolic dysfunction due to bilateral renal wrapping (RW) or pronounced diastolic and mild systolic dysfunction due to 4 weeks of chronic isoproterenol exposure (ISO), CXL-1020 attenuated the elevated LV filling pressures, improved the end diastolic pressure volume relationship, and accelerated relaxation. CXL-1020 facilitated Ca2+ re-uptake and enhanced myocyte relaxation in isolated cardiomyocytes from ISO rats. Compared to milrinone, CXL-1020 more effectively improved Ca2+ reuptake in ISO rats without concomitant chronotropy, and did not enhance Ca2+ entry via L-type Ca2+ channels nor increase myocardial arrhythmias/ectopic activity. Acute-therapy with CXL-1020 improved ventricular relaxation and Ca2+ cycling, in the setting of chronic induced diastolic dysfunction. CXL-1020's lusitropic effects were greater than those seen with the cAMP-dependent agent milrinone, and unlike milrinone it did not produce chronotropy or increased ectopy. HNO is a promising new potential therapy for both systolic and diastolic heart failure.

3.
Pharmacol Res Perspect ; 3(6): e00198, 2015 12.
Artigo em Inglês | MEDLINE | ID: mdl-27022470

RESUMO

The preclinical pharmacodynamic and pharmacokinetic properties of 4-methylbenzyl (3S, 4R)-3-fluoro-4-[(Pyrimidin-2-ylamino) methyl] piperidine-1-carboxylate (CERC-301), an orally bioavailable selective N-methyl-D-aspartate (NMDA) receptor subunit 2B (GluN2B) antagonist, were characterized to develop a translational approach based on receptor occupancy (RO) to guide CERC-301 dose selection in clinical trials of major depressive disorder. CERC-301 demonstrated high-binding affinity (K i, 8.1 nmol L(-1)) specific to GluN2B with an IC 50 of 3.6 nmol L(-1) and no off-target activity. CERC-301 efficacy was demonstrated in the forced swim test with an efficacy dose (ED 50) of 0.3-0.7 mg kg(-1) (RO, 30-50%); increase in locomotor activity was observed at ED 50 of 2 mg kg(-1), corresponding to an RO of 75%. The predicted 50% RO concentration (Occ50) in humans was 400 nmol L(-1), similar to that predicted for rat, dog, and monkey (300, 200, and 400 nmol L(-1), respectively). Safety pharmacology and neurotoxicity studies raised no specific safety concerns. A first-in-human study in healthy males demonstrated a dose-proportional pharmacokinetic profile, with T max of ~1 h and t 1/2 of 12-17 h. Based on the preclinical and pharmacodynamic data, doses of ≥8 mg in humans are hypothesized to have an acceptable safety profile and result in clinically relevant peak plasma exposure.

4.
Circ Heart Fail ; 6(6): 1250-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24107588

RESUMO

BACKGROUND: The nitroxyl (HNO) donor, Angeli's salt, exerts positive inotropic, lusitropic, and vasodilator effects in vivo that are cAMP independent. Its clinical usefulness is limited by chemical instability and cogeneration of nitrite which itself has vascular effects. Here, we report on effects of a novel, stable, pure HNO donor (CXL-1020) in isolated myoctyes and intact hearts in experimental models and in patients with heart failure (HF). METHODS AND RESULTS: CXL-1020 converts solely to HNO and inactive CXL-1051 with a t1/2 of 2 minutes. In adult mouse ventricular myocytes, it dose dependently increased sarcomere shortening by 75% to 210% (50-500 µmol/L), with a ≈30% rise in the peak Ca(2+) transient only at higher doses. Neither inhibition of protein kinase A nor soluble guanylate cyclase altered this contractile response. Unlike isoproterenol, CXL-1020 was equally effective in myocytes from normal or failing hearts. In anesthetized dogs with coronary microembolization-induced HF, CXL-1020 reduced left ventricular end-diastolic pressure and myocardial oxygen consumption while increasing ejection fraction from 27% to 40% and maximal ventricular power index by 42% (both P<0.05). In conscious dogs with tachypacing-induced HF, CXL-1020 increased contractility assessed by end-systolic elastance and provided venoarterial dilation. Heart rate was minimally altered. In patients with systolic HF, CXL-1020 reduced both left and right heart filling pressures and systemic vascular resistance, while increasing cardiac and stroke volume index. Heart rate was unchanged, and arterial pressure declined modestly. CONCLUSIONS: These data show the functional efficacy of a novel pure HNO donor to enhance myocardial function and present first-in-man evidence for its potential usefulness in HF. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifiers: NCT01096043, NCT01092325.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Óxidos de Nitrogênio/administração & dosagem , Volume Sistólico/efeitos dos fármacos , Função Ventricular Esquerda/fisiologia , Animais , Antioxidantes/administração & dosagem , Cães , Relação Dose-Resposta a Droga , Feminino , Radicais Livres , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Camundongos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Resultado do Tratamento
5.
Biophys J ; 87(3): 1507-25, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15345532

RESUMO

A computational model of the human left-ventricular epicardial myocyte is presented. Models of each of the major ionic currents present in these cells are formulated and validated using experimental data obtained from studies of recombinant human ion channels and/or whole-cell recording from single myocytes isolated from human left-ventricular subepicardium. Continuous-time Markov chain models for the gating of the fast Na(+) current, transient outward current, rapid component of the delayed rectifier current, and the L-type calcium current are modified to represent human data at physiological temperature. A new model for the gating of the slow component of the delayed rectifier current is formulated and validated against experimental data. Properties of calcium handling and exchanger currents are altered to appropriately represent the dynamics of intracellular ion concentrations. The model is able to both reproduce and predict a wide range of behaviors observed experimentally including action potential morphology, ionic currents, intracellular calcium transients, frequency dependence of action-potential duration, Ca(2+)-frequency relations, and extrasystolic restitution/post-extrasystolic potentiation. The model therefore serves as a useful tool for investigating mechanisms of arrhythmia and consequences of drug-channel interactions in the human left-ventricular myocyte.


Assuntos
Biofísica , Ventrículos do Coração/anatomia & histologia , Função Ventricular , Algoritmos , Arritmias Cardíacas/patologia , Fenômenos Biofísicos , Cálcio/química , Cálcio/metabolismo , Canais de Cálcio/química , ATPases Transportadoras de Cálcio/metabolismo , Humanos , Íons , Cinética , Cadeias de Markov , Modelos Estatísticos , Modelos Teóricos , Potássio/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Sódio/química , Software , Fatores de Tempo
7.
J Clin Invest ; 109(8): 1083-90, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11956246

RESUMO

Regulatory subunit KCNE3 (E3) interacts with KCNQ1 (Q1) in epithelia, regulating its activation kinetics and augmenting current density. Since E3 is expressed weakly in the heart, we hypothesized that ectopic expression of E3 in cardiac myocytes might abbreviate action potential duration (APD) by interacting with Q1 and augmenting the delayed rectifier current (I(K)). Thus, we transiently coexpressed E3 with Q1 and KCNE1 (E1) in Chinese hamster ovary cells and found that E3 coexpression increased outward current at potentials by > or = -80 mV and accelerated activation. We then examined the changes in cardiac electrophysiology following injection of adenovirus-expressed E3 into the left ventricular cavity of guinea pigs. After 72 hours, the corrected QT interval of the electrocardiogram was reduced by approximately 10%. APD was reduced by >3-fold in E3-transduced cells relative to controls, while E-4031-insensitive I(K) and activation kinetics were significantly augmented. Based on quantitative modeling of a transmural cardiac segment, we demonstrate that the degree of QT interval abbreviation observed results from electrotonic interactions in the face of limited transduction efficiency and that heterogeneous transduction of E3 may actually potentiate arrhythmias. Provided that fairly homogeneous ectopic ventricular expression of regulatory subunits can be achieved, this approach may be useful in enhancing repolarization and in treating long QT syndrome.


Assuntos
Sistema de Condução Cardíaco/fisiologia , Síndrome do QT Longo/fisiopatologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/genética , Canais de Potássio/fisiologia , Animais , Animais Geneticamente Modificados , Células CHO , Cricetinae , Feminino , Expressão Gênica , Terapia Genética , Cobaias , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Canais de Potássio KCNQ , Canal de Potássio KCNQ1 , Síndrome do QT Longo/genética , Síndrome do QT Longo/terapia , Modelos Cardiovasculares , Transfecção , Função Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...